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RESUME

Des études préalables ont montré que la méthode de I’é1é-
ment fini est un instrument trés adapté i I'analyse des états
plans de contrainte. Dans la présente communication on décrit

I'application de cette méthode a I’analyse de contraintes dans -

un barrage poids. On a généralisé le programme de la calcu-
latrice digitale de fagon a pouvoir tenir compte automatique-
ment des contraintes thermiques, de celles dues aux poids
propre ainsi que des surcharges arbitraires et aussi de fagon
a pouvoir faire I'analyse par un procédé d’itération. On pré-
sente les résultats obtenus pour différentes hypothéses de
chargement afin de montrer I'efficacité de la méthode.

INTRODUCTION

The matrix algebra formulation .of the equations
of structural analysis completely generalizes the
analytical procedures, and greatly broadens the
scope of their applicability. Traditionally, use of
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SUMMARY

In previous studies, the finite element method has been shown to
provide a convenient tool for the analysis of plane stress systems.
The present paper is concerned with the application of this method
to stress analysis of a gravity dam. The digital computer program
has been extended to account automatically for thermal and dead
weight stresses as well as arbitrary live loads, and makes use of an
iteration procedure in performing the ‘analysis. Results are des-
cribed for a number of different loading'conditions to demonstrate
the effectiveness of the procedure.

the standard methods of structural analysis has
been restricted to the treatment of structures built
up from one-dimensional members, i.e. members
whose elastic and geometric properties can be
expressed as functions of position along the elastic
axis. Through the use of matrix procedures, however,
the same basic principles can be applied in the ana-

lysis of entirely different types of structures-com-

prising assemblages of two-dimensional elergents.
Included among such structures might be plates,
shells, and systems subjected to plane stress or plane
strain.

The purpose of this paper is to describe the appli-
cation of matrix structural analysis methods to the
solution of a plane stress elasticity problem. The
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general procedure, which is known as the finite
element method, has been described in a previous
publication[1]. However, although the versatility
and range of accuracy of the method were indicated
in that report, its usefulness in solving large-scale,
practical problems had not yet been demonstrated.
For this reason, the authors were pleased to be given
the opportunity of undertaking the investigation
described in this report : the application of the finite
element method to the analysis of stresses and dis-
placements in a large concrete gravity dam. The
investigation was sponsored by the Little Rock
District Office of the U. S. Army Corps of Engineers,
and a complete report: on the studies has been sub-
mitted to that office[2]. Due to space limitations, only
a brief summary of the work and a representative
selection from the final results will be presented
here.

STATEMENT OF THE PROBLEM

The system considered in this investigation was a
one foot thick slice of a concrete gravity dam, 196 feet
high from the base to the spillway crest, with a pro-
file as shown in figure 1. Of particular interest in
the study was the effect on the stress distribution of
a crack extending from the foundation rock verti-
cally through most of the height of the section, as
shown in the sketch. The loadings to which the
structure was sujected included the weight of the
concrete, the water pressures, and thermal loads
caused by temperature changes (Fig. 2).

Properties assumed for the concrete and for the
foundation rock in these analyses are shown in
Table I It will be noted that different moduli of
elasticity were assumed for the two materials; the
relatively low modulus taken for the concrete was

TABLE I. Assumed properties of materials

Concrete:
Modulus of Elasticity E, = 2.0 x 108 psi
Poisson's Ratio v =011
Unit Weight ¥, - =180 pct
Thermal Coefficient « = 7.0 x 107¢ per °F

Foundation Rock:

Modulus of Elasticity E;, = 5.0 x 10 psi
Poissons’ Ratio vt =0T
Thermal Coefficient « = 7.0 X 107 per °F
Vertical Modulus B, - =1:05:10% psi
(Orthotropic cases)
Water:
Unit Weight . vp = 62.5 pcf

Temperature Change:

I — 350 F in body of dam decreasing to 0° F
about 30 feet below the surface of the foundation
rock (Fig. 2).
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T16. 1. — Basic geometry of the dam section.

intended to account for the effects of creep and plastic
flow under sustained load. In one phase of the study,
an orthotropic elasticity condition was assumed in
the foundation rock (with the vertical modulus only
one-fifth of the horizontal) because it is quite possible
that horizontal stratification of the foundation might
produce such a condition, and it was of interest to

_ determine the resulting effect on the stress distribu-

tion in the dam.
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T1G. 2. — Finite element idealizations of the dam section.
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of the ﬂrack opemng
_vad combinations
of the studies. In
within the section

nd heel of the dam)
nts were of interest.

TEE FINITE ELEMENT METHOD

element method has been
, only a brief description of
the method will be given here.
features of the present study
n presented before will be dis-
er detail. In general, the method
g Cof u_Zng the actual continuous system

= ge of triangular plate elements, inter-

at the corners, and also loaded only
. Within each element, the normal
ses are assumed uniform, thus con-
yia iy g the elements is maintained even
connected only at the nodal points.

dual triangular elements ; then by adding
pertinent element stiffnesses, the stiffness
bled system is determined. This assem-
2 structure stiffness is represented by the matrix

{R} =[] {r} : )

— vector of all nodal point force components
r = vector of corresponding nodal point dis-

7is eguation can be solved formally for the dis-
is resultmg from specified loads by inver-
stiffness matrix. However, in the present
study, this matrix was too large to be inverted con-
v ily, and the displacements were determined
from Eqg. (1) by an iteration process.

Zfier the nodal point displacements have been
d, the stress components in each of the trian-
elements (which are linearly related to the
ements) can be obtained by the matrix multi-

{o} = [M]{r} (2

in which
{s} = vector of all element stresses o, o, T4y
[ M] = stress transformation matrix.

his study, the principal stresses in the elements

their directions were also determined, in addi-
fion to the x, y stresses.

Element Idealizations

The finite element idealizations used in this study
are shown in figure 2. The coarse mebh 1
in figure Z2a was used in preliminary
order to determine the displacements at =
of the foundation system used in the fine -
lysis (shown by the dashed line). Thus it w
to retain the effect of a deep foundation in
mesh idealization shown in figure 2b without devo-
ting a large number of elements to the fo;;
zone. It was necessary, of course, to make a
coarse mesh analysis for each of the loacu
tions which were applied to the fine mesh sy
In the coarse mesh system, there are a total of 1
elements and 69 nodal points, while in the fine m
system the numbers are 194 and 130 respectively.

Element Stiffness

The derivation of the stiffness matrix of an arbi-
trary isotropic plane stress element is presented in
[1], and will not be repeated here. It is of interest
to note, however, that this same stiffness matrix
can be applied in a plane strain analysis if
modified material properties are used, as follows:

E
* —
B~ 1—v2
3
v
*
LSS R
where E = modulus of elasticity (actual)
v = Poissons’ ratio (actual)

and the starred values represent the modified pro-
perties to be used in a plane strain analysis. The
plane stress condition was ‘considered to be more
applicable in the present study ; but with the assumed
value of Poisson's ratio, the difference between the
two conditions is negligible : E¥/E = 1.03, v*/v = 1.20.

In order to represent the orthotropic foundation
material, it was necessary to develop an orthotropic
element stiffness matrix. For this purpose, the stress-
strain relationship for an orthotropic material was
needed. In this derivation, it was assumed that the
orthotropic material actually consisted of a hori-
zontally layered system of alternately hard and soft
isotropic materials. Designating the properties of
these materials E;, v; and E,, v, respectively, it
was further assumed that:

o, @

~
On the basis of these assumptions, the orthotropic
stress-strain relationship was found to be

1
= Y &
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in which
~ The computer program performs three maj
E,=Ed—r)rf=r (1 - tasks In the complete analysis of a plane grtl?ézg
. E, ,; c‘m First, the elem_ent stiffness and load matrices
ViV L= T®) ::e._ormed from a basic numerical description of the
E if;:f‘fr? Second, Eq. (1) is solved for the displa-
w Ee i =g the nodal points by an iteration procedure.
B, Y re 2 Sud, e mt.ema\ element siresses are determined
E -crn = dliplaqements_ Only the main operations
and r is the proportion of the i of the computer program will be described here;
5 b o Bavors Dhng thiseor?;?t ;Iool}ltmet occupied Q?m_\.l_s of the Codmg wﬂ_l be omitted. The operatioﬁ
1faw, the derivation of the orthotropic eple r:erretssséit:ar %“t?e‘ groggam 1S 1{_\ex1bke in that both input and
ollowed exactly the 1ent stiffiness utput can be « on-line » or may be effected
: , _procedure described in line » through the u . ected « off-
[1] for the isotropic ftriangular element stifiness. pheral equz%ment. g6 ol TAEUEHG tepes Al DLgy
Loadings
Numerical Procedure
3 ‘\\

The load vector {R} in EQ. () 1s meray b N\E Taore mggm\ﬁ_)\\%mm-%&@g\“i
of all the load components applied at the podal points s performed by the computer program, it is necess=es
in any given analysis. For each nodal pomt, \‘ne‘ dead {0 discuss in some detail the actual num(_arlcal

Joad force was computed by aking one-third of cedure that was employed. This mefnod is a mos
the total weight of all elements attached fo e foation of the well-known Gauss-Seidel rterarios
nodal point. Live load (water) forces were applied procedure which, when applied to Eq. (1), involves
only at the nodal points in contact with the water, the repeated calculation of new displacements from
of course, and were taken as the concentrated sta_xtlc the equation
equivalent of the distributed water pressures acting 3 % b e
on these elements. re+D = (kpp) ' [Ra —i:1,§~1km ry iini’Nkmr, ]
The thermal loads were calculated by first deter- (7)
mining the stresses which would exist if all strains .
due to temperature changes were constrained. In a where n = number of the displacement component
plane stress system, these stresses are given by s = cycle of iteration
Ea The only modification of the procedure introduced
S R B AT L) in this analysis is the application of Eq. (7) simul-
: : taneously to both components of the displacement
in which o« = thermal coefficient of expansion at each nodal point. Therefore I, and R, become
AT — change of temperature. vectors with x and y components, and the stiffness

. coefficients are in the form
The nodal forces required to maintain these stresses

in each element were then found by simple statics. o, oo [kmx kwy] (8)
Finally, since these nodal constraints did not really 2l ko Kyylim
iﬁﬁt,oggégifeﬁefédvglasf:rlggsn.’lated by applying equal in which I and m are nodal point numbers.

These reversed nodal forces are the thermal
loads for which the section was analyzed. Displa- Over-Relaxation Factor
cements resulting from these effective loads are )
fhe true thermal displacements in the system. The The rate of convergence of the Gauss-Seidel
total thermal stresses were determined by combining procedure can be greally increased by the use of
the constrained stress of Eq. (6) with the stresses an over-relaxation factor [3]. However, In order
resulting from these thermal loads. to apply this factor it is first necessary fo calculate

the change in the displacement of nodal point n
between cycles of iteration:

THE DIGITAL COMPUTER PROGRAM

Ar;‘ts\ :rns‘li——ri‘f)' (9)
Practical applications of the finite clement method The substitution of Eq. (7) into Eq. (9) yields for the
described above require such a tremendous amount change in displacement ~
of computational effort that they may be performed Ar¥ = (R DR R B R kmrgs’]
only by means of automatic digital computers. A i=1ln—1 i=nN
special program designed to perform such analyses (10)

for arbitrary finite element idealizations has been
written for the IBM 704 operated by the University
of California Computer Center, and was used in all
of the work described in this report. roFY =1l + BALY 1n

The new displacement of nodal point 1 is then deter-
mined from the following equation:
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where 8 is the over-relaxation facior. For the struc-
ture considered in rt it was found that a
value of 8 equal to 1.85 gave the most rapid conver-
gence.

Physical Interpretation of Method

Important physical significance can be attached to
the terms of Eq. (10). The term (%,,,,)! is the flexibility
of nodal point n. This represents the nodal point
displacements resulting from unit nodal point forces,
and can be written in the form of a sub-matrix:

Gt [ o] . (12)

yr yy.

The summation terms represent the elastic forces
acting at nodal point n due to the deformations of
the plate elements:

7(:1+1)_ 2 .7( r(s+1 _l‘ }: kmr(s) (13)
i=1,n—1 i=mn,

The difference between these elastic forces and the
applied loads is the total unbalanced force, which
in sub-matrix form may be written:

3X Re) Qp

Y Ril sn Q’ll

Equation (11) which gives the new displacement of

nodal point n, may now be written in the following

sub-matrix form:
‘ rml(s-i- 1)

Lt

(s+1) (s+1)

(14)

n

(s+1)

n

e S ‘X
r +@L fJuYn

- (15)

Y yx «
It is important to note that any desired nodal point
displacement may be assumed for the first cycle
:f iteration. A good choice of these displacements
1l greatly speed the convergence of the solution.
n -act if all displacements were assumed correctly,
== unbalanced forces given by Eq. (14) would be

= = practical case, there always will be unbalanced
~roes 1in the system at first, and the iteration process

Zzput Data

“or the purpose of defining the structure, all
~== points and elements are numbered, consecu-
“=y The numerical description is read into the
=== in the form of punched cards, by the follo-
B Sour arrays:

- ~=rameter Array (6 numbers):

Number of elements.
Jlumber of nodal points.
Jlumber of boundary points.

- _wer-relaxation factor 8.
vergence limit.
fficient of thermal expansion «.

B. Element Array (9 numbers

Element number.

Number of nodal point ;.

Number of nodal point j.

Number of nodal point k.

Modulus of elasticity E

Poisson’s ratio v

Unit weight of element v

Temperature change within element AT

CICIIICIIL).

© OHZDGIR N

E
Orthotropic factor p = E—“
Y

C. Nodal Point Array (7 numbers per nodal poini):

Nodal point number.
x-ordinate.
y-ordinate,

x-load.

y-load.

Initial x-displacement.
. Initial y-displacement.

g

D. Boundary Condition (2 numbers per boundary
point):
1. Nodal point number.
2. This number indicates the type of constraint:
« O» for a point fixed both vertically and
horizontally, the only boundary constraint
condition considered in this investigation.

Output Information

At specified intervals in the iteration procedure,
nodal displacements and element stresses are prin-
ted. Figure 3 illustrates the form of the computer
output in a typical case. In addition, the sum of the
absolute magnitude of the unbalanced forces at all
nodal points (Eq. 14), which is computed for each
cycle, is printed out as a check on the convergence
of the procedure. In all analyses made during the
course of this investigation, this sum was reduced
to less than 1/1000 of its value after the first cycle
of iteration.

Timing

The computational time required by the program
is approximately equal to 0.07 n.m seconds, where
n equals the number of nodal points and m equals
the number of cycles of iteration. The number of
cycles required depends on the accuracy of the
initially assumed displacements and on the desired
degree of convergence. For the structure considered
in this report, the computer time per solution was
approximately 7 minutes for the coarse mesh and
17 minutes for the fine mesh. The number of cycles
of iteration for the various cases ranged from about
70 to 100. &,

RESULTS
Although the printed output of the cor

shown in figure 3, contained the comp
the investigation, they were also pres




1) PSI) ( PSI) ( DEGREES )
ELEMENT X(—ZSTIR)ESS 7 v(-z?rla)ess xv(—spinsss HAX(-STRESS MIN-STRESS DIRECTION
1 -21.637024 -40.614304 33.432649 3.6 -65.9 -37.1
52 15.095711 3.577621 21.158474 3.3 -12.6 -37.4
3 -42.514305 -38.270859 2.591661 -37.0 -43.7 -64.7
4 -31.742538 -16.989304 14.911327 -1.7 -41.0 -58.2
5 -5.087471 9.535896 -4.226090 10.7 -6.2 75.0
6- -60.592682 -21.883614 5.673300 -21.1 -61.4 -81.8
7 3.596840 -6.501434 8.060141 8.1 -11.0 -29.0
8 -41.907402 8.325272 22.115488 16.7 -50.3 -69.3
) -29.894760 -14.201363 2.760811 -13.7 -30.4 -80.3
10 -19.019836 -113.042328 41.108610 -3.6 -128.5 -20.6
11 -9.670067 -3.545715 1.172920 =3.3 " -9.9 -79.5
12 -19.362946 24.689590 0.280712 24.7 -19.4 -89.6
13 -42.158066 2.489532 -3.621626 2.8 -42.4 85.4
14 -13.876846 9.762047 -1.376879 9.8 -14.0 86.7
, 15 -55.332329 12.438753 11.194128 14.6 ' =57.1 -80.9
; l6 ~11.221085 21.112564 13.384552 25.9 -16.0 -70.2
. 17 ~61.941177 ~16.112938 31.179846 -0.3 -117.7 -63.2
18 14.900993 -10.251991 33.216614 37.8 -33.2 -34.6
19 -77.299423 -18.673866 45.,481194 6.1 -102.1 -6l.4
1 20 -68.392212 -25.644630 21.986590 -16.4 -11.7 -67.1
] 21 -34.6477783 -10.517090 11.790384 -S.7 -39.3 -67.17
| 22 -7.344345 8.977432 -4.832099 10.3 -8.7 T4.7
23 -34.220215 23.321732 -8.167995 24.5 -35.4 82.1
24 -11.582161 32.631912 -2.718958 32.8 =117 86.5
25 -46.657974 19.291512 3.835845 19.5 -46.9 -86.7
26 -13.946526 43.675842 18.032915 48.9 -19.1 -74.0
217 -83.458755 -12.719467 45.440448 9.5 -105.7 -63.9
28 -4.890427 13.2081176 37.164865 42.4 -34.1 -51.8
29 1.348351 -10.524033 30.664423 26.6 -35.8 -39.5
30 -102.706940 -89.829132 46.319461 -49.5 -143.0 -49.0
31 -36.349174 -70.508469 66.600939 15.3 -122.2 -37.8
32 -1.370247 -44.906326 25.714500 10.6 -56.8 -24.9
33 -26.064774 -64.952545 59.050345 16.7 -107.7 -35.9
34 -20.962494 ~16.453156 14.811054 =337 -33.7 -49.3
35 -32.728851 -5.217323 2.676623 -5.0 -33.0 -84.5
36 -45.84431% 15.385841 -0.936499 15.4 -45.9 89.1
37 -22.696800 12.184837 -2.723261 12.4 -22.9 85.6
38 -9.308067 33.630989 -7.344516 34.9 -10.5 80.6
39 -16.388954 38.171394 -4.737985 38.6 -16.8 85.1
40 29.606812 46.513466 2.932751 47.0 29.1 -80.4
41 -6.309235 29.010864 -7.292584 30.5 -7.8 76.8
42 41.728279 65.571236 81.198050 135.7 -28.% -49.2
43 -18.289627 -15.782555 19.939212 2.9 -37.0 -46.8
44 22.005043 -23.887611 62.266115 65.4 -67.3 -34.9
45 -9.252480 -55.976212 39.016029 12.9 -/8.1 -29.5
' 46 -23.453789 -69.528412 '51.371544 9.8 -102.8 -32.9
41 -57.654015 -19.821014 12.165121 -16.2 =612 -73.¢
48 -16.010735 -1.447845 13.872331 6.9 -24.4 -58.8
49 -53.434456 6.212318 3.402412 6.4 -53.6 -B6.7
50 -11.542534 29.182938 16.814773 35.2 -17.6 -70.2
51 ~33.487152 19.204918 16.218376 23.8 =38.1 -74.2
( INCHES ) ( INCHES )
NODAL POINI X-DISPLACEMENT Y-DISPLACEMENT
1 0.045173 -0.029458
2 0.054178 -0.013816
3 0.130151 -0.034537
4 0.166736 -0.067413
5 0.190258 -0.100647 \
6 0.209396 -0.136003
7 0.225354 ° -0.171460
8 0.238976 -0.2076217
9 0.250559 T-0.243729
10 0.261115 -0.279447
11 0.272950 -0.320961
12 0.289812 -0.371849
13 0.297384 -0.398693
14 0.238857 -0.416963
15 0.237644 -0.395673
16 0.191532 - -0.400589
17 0.2323%6 -0.337109
18 0.190137 ~0.351804
19 0.149180 -0.364911
20 0.141777 -0.380089
21 0.129665 -0.372276
22 0.238763 -0.288985
23 0.196613 -0.306839
24 0.154202 -0.323265
25 0.111614 -0.336806
26 0.087621 -0.344180
21 0.201616 -0.264921
28 0.159923 -0.282565
29 0.117430 -0.297379
30 0.096284 -0.302664
31 0.090143 -0.324456
32 0.068399 -0.327413 o
33 0.070444 -0.305661
34 0.046395 -0.305916
35 0.205631 -0.222702
36 " 0163587 -0.241099
37 0.123230 -0.257917
38 0.0846063 -0.269945
39 0.G71567. -0.268471
40 0.048155 -0.267604
41 0.0161%5 -0.265461
42 0.207651 -0.180322
43 U.164601 -0.199870
44 0.122949 -0.217015

45 0.083207 -0.233610 F1c. 3. — Digital computer output.




cally in order that they might be more easily inter-
preted. Stress results were presented in two types
of charts. Stress Vectors, shown in figure 4 for the
dead plus live load acting on the uncracked section,
are merely a direct graphical representation of the
magnitudes and directions of the principal stresses,
plotted from the center of each element. Such figures
give a good qualitative picture -of the state of stress
in the section; but for quantitative studies, the Stress
Contours, shown in figures 5, 6, and 7 are preferable.
These contours, or iso-static lines, are lines of cons-
tant stress on the section. They clearly indicate the
areas of high stress concentration.

Although it is not the purpose of this paper to
discuss the specific results obtained in the investi-
gation, a few comments with regard to these figures
may be of interest. Figure 5 shows the stress distri-
bution in the section with a crack extending through
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7/9 of the height, when subjected to dead plus live
loads. The compressive stress concentrations at the
base and top of the crack, and the tensile stress
zones at the heel and near the top of the crack are
of particular interest here. A comparison of the two
cases shown in figure 6 demonstrates the importance
of the temperature stresses on the uncracked sec-
tion, in comparison with those due to dead plus live
loading. Comparison of figure 7 with figure Ba
indicates the relatively small influence exerted by
the reduced vertical modulus of the orthotropic
foundation.

Nodal displacement results were also sented
in two types of charts. Figure 8 shows the oundary
nodal point displacement vectors. Lines connecting
the ends of these vectors show the outline of the
deformed structure, to an exaggerated scale. Of
more interest in this investigation, however, was the
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F16. 6. — Influence of temperature on normal stress distribution — uncracked section.
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relative displacemeant of the two s
shown in figure 9. Here the su
temperature, dead load, and desz
the crack opening are clearly
interest to note that the live loading -
cient to close the crack completely.

CONCLUSIONS

This investigation has clearly demonsir
applicability and practicality of the finit
method in solving large-scale and compl
stress (or plane strain) elasticity problems
of the most important attributes of the method
versatility, which results from its discrete (T
than continuous) representation of the 5‘_:
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G T
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F1c. 7. — Normal stress distribution with orthotropic
foundation — 7/9 crack height— dead plus live load.
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| \ . TEMPERATURE LIVE LOAD
TEMPERATURE
F16. 9. — Crack openings — 7/9 crack height.

1
' N\
.“\/ I'\ \\ rence between the moduli of the foundation rock
A / '.\A \\ and the concrete of the dam, and the fact that one
,"\ H material might be orthotropic while the other was
A / | \ isotropic, caused no difficulty whatsoever. Similarly,
:\ i Y because the temperature changes were assigned
; / : ’ \ element by element, any desired thermal gradient
| ! . could be represented.

Also to be noted is the ease with which the trian-

gular element system can be arranged fto fit any
specified boundary condition. The internal crack
becomes merely another external boundary’ by this

\J procedure, and leads to no special problems. Ano

i gty
P

advantage of the triangular element represe
is the fact that different sizes of eleme,‘Ls can be

JISESRE 1

=

employed in different parts of the syste:
single analyms Thus, it is possible io e;--o*ox S
elements in regions of stress concentration and I

Tic. 8. — Boundary displacements — 7/9 crack height,
dead plus live load.
33




JUIN 1963 BULLETIN RILEM No 19 JUNE 1963

stress gradients, while larger elements may be used
in areas where the stresses are relatively constant.

The principal disadvantage of the finite element
method also results directly from the discrete nature
of the idealization. Because the stresses are assumed
constant within each element, the discontinuous
stress distribution which is computed must be smooth-
ed out graphically to give a better indication of the
actual continuous distribution. In the construction
of the stress contours in this study, it was assumed
that the calculated element stress applied to the
center of the element, and the contour lines were
located accordingly. Increasing the number of ele-
ments tends to reduce the stress discontinuities,
of course, but because the computation time increases
rapidly with the number of elements, it is desirable
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