
10. 

SHELL ELEMENTS 
                    All Shell Elements Are Approximate and a 

Special Case of Three-Dimensional Elasticity  

10.1 INTRODUCTION  

{ XE "Shell Elements" }The use of classical thin shell theory for problems 
of arbitrary geometry leads to the development of higher order differential 
equations that, in general, can only be solved approximately using the 
numerical evaluation of infinite series. Therefore, a limited number of 
solutions exist only for shell structures with simple geometric shapes. 
Those solutions provide an important function in the evaluation of the 
numerical accuracy of modern finite element computer programs. 
However, for the static and dynamic analysis of shell structures of 
arbitrary geometry, which interact with edge beams and supports, the 
finite element method provides the only practical approach at this time. 

Application of the finite element method for the analysis of shell 
structures requires that the user have an understanding of the 
approximations involved in the development of the elements. In the 
previous two chapters, the basic theory of plate and membrane elements 
has been presented. In this book, both the plate and membrane elements 
were derived as a special case of three-dimensional elasticity theory, in 
which the approximations are clearly stated. Therefore, using those 
elements for the analysis of shell structures involves the introduction of 
very few new approximations. 

{ XE "Arch Dam" }Before analyzing a structure using a shell element, one 
should always consider the direct application of three-dimensional solids 



to model the structure. For example, consider the case of a three-
dimensional arch dam. The arch dam may be thin enough to use shell 
elements to model the arch section with six degrees-of-freedom per node; 
however, modeling the foundation requires the use of solid elements. One 
can introduce constraints to connect the two element types together. 
However, it is simpler and more accurate to use solid elements, with 
incompatible modes, for both the dam and foundation. For that case, only 
one element in the thickness direction is required, and the size of the 
element used should not be greater than two times the thickness. Because 
one can now solve systems of over one thousand elements within a few 
minutes on a personal computer, this is a practical approach for many 
problems. 

10.2 A SIMPLE QUADRILATERAL SHELL ELEMENT 

{ XE "Quadrilateral Element" }The two-dimensional plate bending and 
membrane elements presented in the previous two chapters can be 
combined to form a four-node shell element as shown in Figure 10.1. 
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Figure 10.1 Formation of Flat Shell Element 



It is only necessary to form the two element stiffness matrices in the local 
xyz system. The 24 by 24 local element stiffness matrix, Figure 10.1, is 
then transformed to the global XYZ reference system. The shell element 
stiffness and loads are then added using the direct stiffness method to form 
the global equilibrium equations.  

Because plate bending (DSE) and membrane elements, in any plane, are 
special cases of the three-dimensional shell element, only the shell 
element needs to be programmed. This is the approach used in the 
SAP2000 program. As in the case of plate bending, the shell element has 
the option to include transverse shearing deformations. 

10.3 MODELING CURVED SHELLS WITH FLAT ELEMENTS 
{ XE "Arbitrary Shells" }Flat quadrilateral shell elements can be used to model 
most shell structures if all four nodes can be placed at the mid-thickness of the 
shell. However, for some shells with double curvature this may not be possible. 
Consider the shell structure shown in Figure 10.2. 
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Figure 10.2 Use of Flat Elements to Model Arbitrary Shells 



The four input points 1, 2 3 and 4 that define the element are located on the mid-
surface of the shell, as shown in Figure 10.2. The local xyz coordinate system is 
defined by taking the cross product of the diagonal vectors. Or, 4231 −−= VVVz . 
The distance vector d is normal to the flat element and is between the flat element 
node points and input node points at the mid-surface of the shell and is calculated 
from: 

2
4231 zzzz

d
−−+

±=  (10.1) 

For most shells, this offset distance is zero and the finite element nodes are 
located at the mid-surface nodes. However, if the distance d  is not zero, 
the flat element stiffness must be modified before transformation to the 
global XYZ reference system. It is very important to satisfy force 
equilibrium at the mid- surface of the shell structure. This can be 
accomplished by a transformation of the flat element stiffness matrix to 
the mid-surface locations by applying the following displacement 
transformation equation at each node: 
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 (10.2) 

Physically, this is stating that the flat element nodes are rigidly attached to 
the mid-surface nodes. It is apparent that as the elements become smaller, 
the distance d  approaches zero and the flat element results will converge 
to the shell solution. 

10.4 TRIANGULAR SHELL ELEMENTS 
{ XE "Triangular Elements" }It has been previously demonstrated that the 
triangular plate-bending element, with shearing deformations, produces excellent 
results. However, the triangular membrane element with drilling rotations tends to 
lock, and great care must be practiced in its application. Because any geometry 
can be modeled using quadrilateral elements, the use of the triangular element 
presented in this book can always be avoided. 



10.5 USE OF SOLID ELEMENTS FOR SHELL ANALYSIS 

The eight-node solid element with incompatible modes can be used for 
thick shell analysis. The cross-section of a shell structure modeled with 
eight-node solid elements is shown in Figure 10.3. 

 
Figure 10.3 Cross-Section of Thick Shell Structure  

Modeled with Solid Elements 

Note that there is no need to create a reference surface when solid 
elements are used. As in the case of any finite element analysis, more than 
one mesh must be used, and statics must be checked to verify the model, 
the theory and the computer program. 

 

10.6 ANALYSIS OF THE SCORDELIS-LO BARREL VAULT 
 
{ XE "Scordelis-Lo Barrel Vault" }The Scordelis-Lo barrel vault is a classical test 
problem for shell structures [1,2]. The structure is shown in Figure 10.4, with one 
quadrant modeled with a 4 by 4 shell element mesh. The structure is subjected to 
a factored gravity load in the negative z-direction. The maximum vertical 
displacement is 0.3086 ft. and mid-span moment is 2,090 lb. ft. 
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Figure 10.4 Scordelis-Lo Barrel Vault Example 

To illustrate the convergence and accuracy of the shell element presented in this 
chapter, two meshes, with and without shearing deformations, will be presented. 
The results are summarized in Table 10.1. 

 

Table 10.1 Result of Barrel Shell Analysis 

 Theoretical 4 x4 DKE 4 x4 DSE 8 x 8 DKE 8 x 8 DSE 

Displacement 0.3086 0.3173 0.3319 0.3044 0.3104 

Moment 2090 2166 2252 2087 2113 

{ XE "Plate Bending Elements:DSE" }One notes that the DSE tends to be 
more flexible than the DKE formulation. From a practical viewpoint, both 
elements yield excellent results. It appears that both will converge to 
almost the same result for a very fine mesh. Because of local shear 
deformation at the curved pinned edge, one would expect DSE 
displacement to converge to a slightly larger, and more correct, value. 

 



10.7 HEMISPHERICAL SHELL EXAMPLE 

{ XE "Kirchhoff Approximation" }The hemispherical shell shown in Figure 10.5 
was proposed as a standard test problem for elements based on the Kirchhoff thin 
shell theory [1].  
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Figure 10.5 Hemispherical Shell Example 
The results of the analyses using the DKE and DSE are summarized in Table 
10.2. Because the theoretical results are based on the Kichhoff approximation, the 
DKE element produces excellent agreement with the theoretical solution. The 
DSE results are different. Because the theoretical solution under a point load does 
not exist, the results using the DSE approximation are not necessarily incorrect. 
 

Table 10.2 Result of Hemispherical Shell Analysis 

 Theoretical 8 x 8 DKE 8 x 8 DSE 

Displacement 0.094 0.0939 0.0978 

Moment ---------- 1.884 2.363 

 



It should be emphasized that it is physically impossible to apply a point load to a 
real structure. All real loads act on a finite area and produce finite stresses. The 
point load, which produces infinite stress, is a mathematical definition only and 
cannot exist in a real structure. 

 

10.8 SUMMARY 

It has been demonstrated that the shell element presented in this book is accurate 
for both thin and thick shells. It appears that one can use the DSE approximation 
for all shell structures. The results for both displacements and moment appear to 
be conservative when compared to the DKE approximation. 
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