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PLATE BENDING ELEMENTS 
Plate Bending is a Simple Extension of Beam Theory 

8.1 INTRODUCTION 
{ XE "Plate Bending Elements" }Before 1960, plates and slabs were modeled 
using a grid of beam elements for many civil engineering structures. Only a small 
number of “closed form” solutions existed for plates of simple geometry and 
isotropic materials. Even at the present time many slab designs are based on grid 
models. This classical approximate approach, in general, produces conservative 
results because it satisfies statics and violates compatibility. However, the internal 
moment and shear distribution may be incorrect. The use of a converged finite 
element solution will produce a more consistent design. The fundamental 
difference between a grid of beam elements and a plate-bending finite element 
solution is that a twisting moment exists in the finite element model; whereas, the 
grid model can only produce one-dimensional torsional moments and will not 
converge to the theoretical solution as the mesh is refined. 
{ XE "Plate Bending Elements:Thin Plates" }The following approximations are 
used to reduce the three-dimensional theory of elasticity to govern the behavior of 
thin plates and beams: 

1. { XE "Plate Bending Elements:Reference Surface" }It is assumed that 
a line normal to the reference surface (neutral axis) of the plate (beam) 
remains straight in the loaded position. This displacement constraint is 
the same as stating that the in-plane strains are a linear function in the 
thickness direction. This assumption does not require that the rotation 
of the normal line to be equal to the rotation of the reference surface; 
hence, transverse shear deformations are possible. 

2. In addition, the normal stress in the thickness direction, which is 
normally very small compared to the bending stresses, is assumed to 
be zero for both beams and plates. This is accomplished by using 
plane stress material properties in-plane as defined in Chapter 1. Note 
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that this approximation allows Poisson’s ratio strains to exist in the 
thickness direction. 

3. { XE "Kirchhoff Approximation" }If the transverse shearing strains are 
assumed to be zero, an additional displacement constraint is introduced 
that states that lines normal to the reference surface remain normal 
to the reference surface after loading. This approximation is 
attributed to Kirchhoff and bears his name. 

{ XE "Plate Bending Elements:Shearing Deformations" }{ XE "Shearing 
Deformations" }Classical thin plate theory is based on all three approximations 
and leads to the development of a fourth order partial differential equation in 
terms of the normal displacement of the plate. This approach is only possible for 
plates of constant thickness. Many books and papers, using complicated 
mathematics, have been written based on this approach. However, the Kirchhoff 
approximation is not required to develop plate bending finite elements that are 
accurate, robust and easy to program. At the present time, it is possible to include 
transverse shearing deformations for thick plates without a loss of accuracy for 
thin plates. 
In this chapter, plate bending theory is presented as an extension of beam theory 
(see Appendix F) and the equations of three-dimensional elasticity. Hence, no 
previous background in plate theory is required by the engineer to fully 
understand the approximations used. Several hundred plate-bending finite 
elements have been proposed during the past 30 years. However, only one 
element will be presented here. The element is a three-node triangle or a four-
node quadrilateral and is formulated with and without transverse shearing 
deformations. The formulation is restricted to small displacements and elastic 
materials. Numerical examples are presented to illustrate the accuracy of the 
element. The theory presented here is an expanded version of the plate bending 
element first presented in reference [1] using a variational formulation. 
8.2 THE QUADRILATERAL ELEMENT 

{ XE "Quadrilateral Element" }First, the formulation for the quadrilateral element 
will be considered. The same approach applies to the triangular element. A 
quadrilateral of arbitrary geometry, in a local x-y plane, is shown in Figure 8.1. 
Note that the parent four-node element, Figure 8.1a, has 16 rotations at the four 
node points and at the mid-point of each side. The mid-side rotations are then 
rotated to be normal and tangential to each side. The tangential rotations are then 
set to zero, reducing the number of degrees-of-freedom to 12, Figure 8.1b. The 
sides of the element are constrained to be a cubic function in zu and four 
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displacements are introduced at the corner nodes of the element, Figure 8.1c. 
Finally, the mid-side rotations are eliminated by static condensation, Figure 8.1d, 
and a 12 DOF element is produced. 
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Figure 8.1 Quadrilateral Plate Bending Element 
The basic displacement assumption is that the rotation of lines normal to the 
reference plane of the plate is defined by the following equations: 
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The eight-node shape functions are given by: 
4/)1)(1(1 srN −−=         4/)1)(1(2 srN −+=  
4/)1)(1(3 srN ++=         4/)1)(1(4 srN +−=  
2/)1)(1( 2

5 srN −−=       2/)1)(1( 2
6 srN −+=  (8.2) 

2/)1)(1( 2
7 srN +−=       2/)1)(1( 2

8 srN −−=  
{ XE "Hierarchical Functions" }Note that the first four shape functions are the 
natural bilinear shape functions for a four-node quadrilateral. The four shape 
functions for the mid-side nodes are an addition to the bilinear functions and are 
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often referred to as hierarchical functions. A typical element side ij is shown in 
Figure 8.2. 
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Figure 8.2 Typical Element Side 
The tangential rotations are set to zero and only the normal rotations exist. 
Therefore, the x and y components of the normal rotation are given by: 

ijijy

ijijx

θαθ

θαθ

∆−=∆

∆=∆

cos

sin
 (8.3) 

Hence, Equation (8.1) can be rewritten as: 
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{ XE "Plate Bending Elements:Positive Displacements" }The number of 
displacement degrees-of-freedom has now been reduced from 16 to 12, as 
indicated in Figure 8.1b. The three-dimensional displacements, as defined in 
Figure 8.3 with respect to the x-y reference plane, are:  
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Figure 8.3 Positive Displacements in Plate Bending Element 
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Note that the normal displacement of the reference plane ),( sruz  has not been 
defined as a function of space. Now, it is assumed that the normal displacement 
along each side is a cubic function. From Appendix F, the transverse shear strain 
along the side is given by: 

ijjizizjij  
3
2 - ) + ( 
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L
1 = θθθγ ∆  (8.6) 

From Figure 8.2, the normal rotations at nodes i and j are expressed in terms of 
the x and y rotations. Or, Equation (8.6) can be written as: 
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This equation can be written for all four sides of the element. 
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It is now possible to express the node shears in terms of the side shears. A typical 
node is shown in Figure 8.4. 

Figure 8.4 Node Point Transverse Shears 
The two mid-side shears are related to the shears at node i by the following strain 
transformation: 
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Or, in inverse form: 
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where ijkikiij αααα sincossincosdet −= . 

The final step in determining the transverse shears is to use the standard four-node 
bilinear functions to evaluate the shears at the integration point.  

8.3 STRAIN-DISPLACEMENT EQUATIONS 
{ XE "Plate Bending Elements:Strain-Displacement Equations" }{ XE "Strain 
Displacement Equations:Plate Bending" }Using the three-dimensional strain-
displacement equations, the strains within the plate can be expressed in terms of 
the node rotations. Or: 
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Therefore, at each integration point the five components of strain can be 
expressed in terms of the 16 displacements, shown in Figure 8.2c, by an equation 
of the following form: 
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Hence, the strain-displacement transformation matrix is a product of two matrices 
in which one is a function of z only.  
8.4 THE QUADRILATERAL ELEMENT STIFFNESS  
{ XE "Plate Bending Elements:Properties" }From Equation (8.11), the element 
stiffness matrix can be written as: 

∫∫ == dADdV T bbEBBk T  (8.12) 

where  

dzD T∫= aEa  (8.13) 

After integration in the z-direction, the 5 by 5 force-deformation relationship for 
orthotropic materials is of the following form: 
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The moments M  and shears resultant V  are forces per unit length. As in the case 
of beam elements, the deformations associated with the moment are the curvature 
ψ . For isotropic plane stress materials, the non-zero terms are given by: 
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8.5 SATISFYING THE PATCH TEST 
{ XE "Patch Test" }{ XE "Plate Bending Elements:Patch Test" }For the element to 
satisfy the patch test, it is necessary that constant curvatures be produced if the 
node displacements associated with constant curvature are applied. Equation 
(8.11) can be written in the following form: 
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{ XE "Plate Bending Elements:Constant Moment" }where, for a quadrilateral 
element, 11b is a 3 by 12 matrix associated with the 12 node displacements 
( wyx ,,θθ ) and 12b  is a 3 by 4 matrix associated with the incompatible 4 normal 
side rotations ( θ∆ ). In order that the element satisfies the constant moment patch 
test, the following modification to 12b  must be made:  

∫−= dA
A 121212
1 bbb  (8.17) 

The development of this equation is presented in the chapter on incompatible 
elements, Equation (6.4). 
8.6 STATIC CONDENSATION 
{ XE "Static Condensation" }The element 16 by 16 stiffness matrix for the plate 
bending element with shearing deformations is obtained by numerical integration. 
Or: 
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where 22K  is the 4 by 4 matrix associated with the incompatible normal rotations. 

The element equilibrium equations are of the following form: 
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where F is the 12 node forces. Because the forces associated with θ∆  must be 
zero, those deformation degrees-of-freedom can be eliminated, by static 
condensation, before assembly of the global stiffness matrix. Therefore, the 12 by 
12 element stiffness matrix is not increased in size if shearing deformations are 
included. This quadrilateral (or triangular) plate bending element, including shear 
deformations, is defined in this book as the Discrete Shear Element, or DSE.  
8.7 TRIANGULAR PLATE BENDING ELEMENT 
{ XE "Plate Bending Elements:Triangular Element" }The same approximations 
used to develop the quadrilateral element are applied to the triangular plate 
bending element with three mid-side nodes. The resulting stiffness matrix is 9 by 
9. Approximately 90 percent of the computer program for the quadrilateral 
element is the same as for the triangular element. Only different shape functions 
are used and the constraint associated with the fourth side is skipped. In general, 
the triangle is stiffer than the quadrilateral. 
8.8 OTHER PLATE BENDING ELEMENTS 

The fundamental equation for the discrete shear along the sides of an element is 
given by Equation (8.6). Or:  

θθθγ ∆ 
3
2 - ) + ( 

2
1 - )u - u( 

L
1 = jizizjij  (8.20) 

{ XE "Plate Bending Elements:PQ2" }If θ∆ is set to zero at the mid-point of each 
side, shearing deformations are still included in the element. However, the 
internal moments within the element are constrained to a constant value for a thin 
plate. This is the same as the PQ2 element given in reference [1], which is based 
on a second order polynomial approximation of the normal displacement. The 
displacements produced by this element tend to have a small error; however, the 
internal moments for a coarse mesh tend to have a significant error. Therefore, 
this author does not recommend the use of this element. 
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If the shear is set to zero along each side of the element, the following equation is 
obtained: 

 ) + (  - )w - w( 
L

 = jiij θθθ
4
3

2
3

∆  (8.21) 

Hence, it is possible to directly eliminate the mid-side relative rotations directly 
without using static condensation. This approximation produces the Discrete 
Kirchhoff Element, DKE, in which transverse shearing deformations are set to 
zero. It should be noted that the DSE and the DKE for thin plates converge at 
approximately the same rate for both displacements and moments. For many 
problems, the DSE and the DKE tend to be more flexible than the exact solution. 
8.9 NUMERICAL EXAMPLES 
{ XE "Plate Bending Elements:Convergence" }{ XE "Plate Bending 
Elements:Examples" }Several examples are presented to demonstrate the 
accuracy and convergence properties of quadrilateral and triangular plate bending 
elements with and without transverse shear deformations. A four-point numerical 
integration formula is used for the quadrilateral element. A three-point integration 
formula is used for the triangular element. 

8.9.1 One Element Beam 
To illustrate that the plate element reduces to the same behavior as classical beam 
theory, the cantilever beam shown in Figure 8.5 is modeled as one element that is 
2 inches thick. The narrow element is 6 inches by 0.2 inch in plan. 
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Figure 8.5 Cantilever Beam Modeled using One Plate Element 
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{ XE "Plate Bending Elements:DKE" }{ XE "Plate Bending Elements:DSE" }The 
end displacements and base moments are summarized in Table 8.1 for various 
theories. 
Table 8.1 Displacement and Moment for Cantilever Beam 

THEORY and ELEMENT Tip Displacement 
(inches) 

Maximum Moment 
(kip-in.) 

Beam Theory  0.0000540 6.00 

Beam Theory with Shear Deformation 0.0000587 6.00 

DSE Plate Element 0.0000587 6.00 

DKE Plate Element 0.0000540 6.00 

PK2 Plate Element – Ref. [1] 0.0000452 3.00 

This example clearly indicates that one plate element can model a one-
dimensional beam without the loss of accuracy. It is worth noting that many plate 
elements with shear deformations, which are currently used within computer 
programs, have the same accuracy as the PQ2 element. Hence, the user must 
verify the theory and accuracy of all elements within a computer program by 
checking the results with simple examples. 

8.9.2 Point Load On Simply Supported Square Plate 

{ XE "Plate Bending Elements:Point Load" }To compare the accuracy of the DSE 
and DKE as the elements become very thin, a 4 by 4 mesh, as shown in Figure 
8.6, models one quadrant of a square plate. Note that the normal rotation along the 
pinned edge is set to zero. This “hard” boundary condition is required for the 
DSE. The DKE yields the same results for both hard and soft boundary conditions 
at the pinned edge.  
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Figure 8.6 Point Load at Center of Simply Supported Square Plate 
The maximum displacement and moment at the center of the plate are 
summarized in Table 8.2. For a thin plate without shear displacements, the 
displacement is proportional to 1/h3. Therefore, to compare results, the 
displacement is normalized by the factor h3. The maximum moment is not a 
function of thickness for a thin plate. For this example, shearing deformations are 
only significant for a thickness of 1.0. The exact thin-plate displacement for this 
problem is 1.160, which is very close to the average of the DKE and the DSE 
results. Hence, one can conclude that DSE converges to an approximate thin plate 
solution as the plate becomes thin. However, DSE does not converge for a coarse 
mesh to the same approximate value as the DKE. 
Table 8.2 Convergence of Plate Elements – 4 by 4 Mesh – Point Load 

Displacement times h3 Maximum Moment 
Thickness, h 

DKE DSE DKE DSE 
1 1.195 1.383 0.3545 0.4273 

0.1 1.195 1.219 0.3545 0.4269 

0.01 1.195 1.218 0.3545 0.4269 

0.001 1.195 1.218 0.3545 0.4269 

0.0001 1.195 1.218 0.3545 0.4269 

To demonstrate that the two approximations converge for a fine mesh, a 16 by 16 
mesh is used for one quadrant of the plate. The results obtained are summarized in 
Table 8.3. 
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Table 8.3 Convergence of Plate Element –16 by 16 Mesh – Point Load 

Displacement times h3 Maximum Moment 
Thickness h 

DKE DSE DKE DSE 
1 1.163 1.393 0.5187 0.5704 

0.01 1.163 1.164 0.5187 0.5295 

0.0001 1.163 1.164 0.5187 0.5295 

One notes that the DKE and DSE displacements converge to the approximately 
same value for a point load at the center of the plate. However, because of stress 
singularity, the maximum moments are not equal, which is to be expected. 

8.9.3 Uniform Load On Simply Supported Square Plate 

To eliminate the problem associated with the point load, the same plate is 
subjected to a uniform load of 1.0 per unit area. The results are summarized in 
Table 8.4. For thin plates, the quadrilateral DKE and DSE displacements and 
moments agree to three significant figures.  

Table 8.4 Convergence of Quad Plate Elements –16 by 16 Mesh -  
Uniform Load 

Displacement times h3 Maximum Moment 
Thickness h 

DKE DSE DKE DSE 
1 9.807 10.32 1.142 1.144 

0.01 9.807 9.815 1.142 1.144 

0.0001 9.807 9.815 1.142 1.144 

8.9.4 Evaluation of Triangular Plate Bending Elements 

The accuracy of the triangular plate bending element can be demonstrated by 
analyzing the same square plate subjected to a uniform load. The plate is modeled 
using 512 triangular elements, which produces a 16 by 16 mesh, with each 
quadrilateral divided into two triangles. The results are summarized in Table 8.5. 
For thin plates, the quadrilateral DKE and DSE displacements and moments agree 
to four significant figures. The fact that both moments and displacements 
converge to the same value for thin plates indicates that the triangular elements 
may be more accurate than the quadrilateral elements for both thin and thick 
plates. However, if the triangular mesh is changed by dividing the quadrilateral on 
the other diagonal the results are not as impressive. 
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Table 8.5 Convergence of Triangular Plate Elements –- Uniform Load 

Displacement times h3 Maximum Moment 
Thickness h 

DKE DSE DKE DSE 
1 9.807 10.308 1.145 1.145 

0.01 9.807 9.807 1.145 1.145 

0.0001 9.807 9.807 1.145 1.145 

0.0001* 9.800 9.807 1.142 1.145 
  * Quadrilateral divided on other diagonal 
It should be noted, however, that if the triangular element is used in shell analysis, 
the membrane behavior of the triangular shell element is very poor and inaccurate 
results will be obtained for many problems. 

8.9.5 Use of Plate Element to Model Torsion in Beams 

{ XE "Plate Bending Elements:Torsion" }For one-dimensional beam elements, the 
plate element can be used to model the shear and bending behavior. However, 
plate elements should not be used to model the torsional behavior of beams. To 
illustrate the errors introduced by this approximation, consider the cantilever 
beam structure shown in Figure 8.7 subjected to a unit end torque. 

FIXED END

6.0

0.1

0.2

E=10,000,000
30.0=ν

T=1.0

z

y

x

0=xzτ

0=xyτ

0=yzγ

 
Figure 8.7 Beam Subjected to Torsion Modeled by Plate Elements 

The results for the rotation at the end of the beam are shown in Table 8.6. 
Table 8.6 Rotation at End of Beam Modeled using Plate Elements 

DKE DSE 
Y-ROTATION 1 x 6  9 x 9 1 x 6 9 x 9 
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free 0.0284 0.0233 0.2368 0.1249 

fixed 0.0227 0.0218 0.0849 0.0756 

The exact solution, based on an elasticity theory that includes warpage of the 
rectangular cross section, is 0.034 radians. Note that the shear stress and strain 
boundary conditions shown in Figure 8.6 cannot be satisfied exactly by plate 
elements regardless of the fineness of the mesh. Also, it is not apparent if the y-
rotation boundary condition should be free or set to zero 

For this example, the DKE element does give a rotation that is approximately 68 
percent of the elasticity solution; however, as the mesh is refined, the results are 
not improved significantly. The DSE element is very flexible for the coarse mesh. 
The results for the fine mesh are stiffer. Because neither element is capable of 
converging to the exact results, the torsion of the beam should not be used as a 
test problem to verify the accuracy of plate bending elements. Triangular elements 
produce almost the same results as the quadrilateral elements. 
8.10 SUMMARY 
{ XE "FLOOR Program" }{ XE "SAFE Program" }A relatively new and robust 
plate bending element has been summarized in this chapter. The element can be 
used for both thin and thick plates, with or without shearing deformations. It has 
been extended to triangular elements and orthotropic materials. The plate bending 
theory was presented as an extension of beam theory and three-dimensional 
elasticity theory. The DKE and DSE are currently used in the SAFE, FLOOR and 
SAP2000 programs. 

In the next chapter, a membrane element will be presented with three DOF per 
node, two translations and one rotation normal to the plane. Based on the bending 
element presented in this chapter and membrane element presented in the next 
chapter, a general thin or thick shell element is presented in the following chapter.  
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