
 

5. 

ISOPARAMETRIC ELEMENTS 
Bruce Irons, in 1968, Revolutionized the Finite Element 

Method by Introducing a Natural Coordinate  
Reference System 

5.1 INTRODUCTION 

Before development of the Finite Element Method, researchers in the field of 
structural engineering and structural mechanics found “closed form” solutions in 
terms of known mathematical functions of many problems in continuum 
mechanics. However, practical structures of arbitrary geometry, non-
homogeneous materials or structures made of several different materials are 
difficult to solve by this classical approach. 

Professor Ray Clough coined the terminology “Finite Element Method” in a 
paper presented in 1960 [1]. This paper proposed to use the method as an 
alternative to the finite difference method for the numerical solution of stress 
concentration problems in continuum mechanics. The major purpose of the 
earlier work at the Boeing Airplane Company published in 1956 [2] was to 
include the skin stiffness in the analysis of wing structures and was not intended 
to accurately calculate stresses in continuous structures. The first, fully 
automated, finite element computer program was developed during the period of 
1961 - 1962 [3]. 

It is the author’s opinion that the introduction of the isoparametric element 
formulation in 1968 by Bruce Irons [4] was the single most significant 
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contribution to the field of finite element analysis during the past 40 years. It 
allowed very accurate, higher-order elements of arbitrary shape to be developed 
and programmed with a minimum of effort. The addition of incompatible 
displacement modes to isoparametric elements in 1971 was an important, but 
minor, extension to the formulation [5]. 

5.2 A SIMPLE ONE-DIMENSIONAL EXAMPLE 

To illustrate the fundamentals of the isoparametric approach, the one-
dimensional, three-node element shown in Figure 5.1 is formulated in a natural 
coordinate reference system. 
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Figure 5.1 A Simple Example of an Isoparametric Element 
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The shape functions  are written in terms of the element isoparametric 
reference system. The "natural" coordinate  has a range of . The 
isoparametric and global reference systems are related by the following 
elementary equation: 

iN
s 0.1±=s

xN )()()()()( 332211 sxsNxsNxsNsx =++≡  (5.1) 

The validity of this equation can be verified at values of ,  and 
. No additional mathematical references are required to understand 

Equation (5.1). 

1−=s 0=s
1=s

The global displacement can now be expressed in terms of the fundamental 
isoparametric shape functions. Or: 

uN )()()()()( 332211 susNusNusNsu =++=  (5.2) 

Note that the sum of the shape functions is equal to 1.0 for all values of ; 
therefore, rigid-body displacement of the element is possible. This is a 
fundamental requirement of all displacement approximations for all types of 
finite elements. 

s

The strain-displacement equation for this one-dimensional element is: 
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You may recall from sophomore calculus that this is a form of the chain rule. For 
any value of  the following equations can be written: s

uN(s), s=
ds

sdu )(  (5.4a) 

J
ds
dx

== xN(s), s (s) (5.4b) 

Therefore: 
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From Equation (5.1), the derivatives with respect to the global and isoparametric 
reference systems are related by: 

  dx  (5.6) dssJds )(== xN s(s),

The 3 by 3 element stiffness can now be expressed in terms of the natural system: 

dssJ )((s)(s)∫
+

−

=
1

1

T BEBK  (5.7) 

In general, Equation (5.7) cannot be evaluated in closed form. However, it can be 
accurately evaluated by numerical integration. 

5.3 ONE-DIMENSIONAL INTEGRATION FORMULAS 

Most engineers have used Simpson’s rule or the trapezoidal rule to integrate a 
function evaluated at equal intervals. However, those traditional methods are not 
as accurate, for the same computational effort, as the Gauss numerical integration 
method presented in Appendix G. The Gauss integration formulas are of the 
following form: 

∫ ∑
+

− =

==
1

1

n

i
ii sfWdssfI

1

)()(  (5.8) 

The Gauss points and weight factors for three different formulas are summarized 
in Table 5.1. 

Table 5.1 Gauss Points and Weight Factors for Numerical Integration 

n 1s  1W  2s  2W  3s  3W  

1 0 2     
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2 31−  1 31  1   

3 6.0−  95  0 98  6.0  95  

Note that the sum of the weight factors is always equal to 2. Higher order 
numerical integration formulas are possible. However, for most displacement-
based finite element analysis higher order integration is not required. In fact, for 
many elements, lower order integration produces more accurate results than 
higher order integration. 

For the analysis of the tapered beam, shown in Figure 5.1, the same material 
properties, loading and boundary conditions are used as were used for the 
example presented in Section 4.2. The results are summarized in Table 5.2. 

Table 5.2 Summary of Results of Tapered Rod Analyses 

ELEMENT TYPE 
Integration 

Order 
3u  

(%error) 
1σ  

(%error) 
2σ  

(%error) 
3σ  

(%error) 

EXACT  0.1607 1.00 5.00 2.00 

Constant Strain Exact 0.1333 
(-17.1 %) 

1.67 
(+67 %) 

1.67  
(-66 %) 

1.67 
(-16.5 %) 

3-node isoparametric 2 point 0.1615 
(+0.5 %) 

 0.58 
(-42 %) 

4.04 
(-19 %) 

2.31 
(+15.5 %) 

3-node isoparametric 3 point 0.1609 
(+0.12 %) 

0.83 
(-17 %) 

4.67 
(-6.7 %) 

2.76 
(+34 %) 

From this simple example, the following conclusions and remarks can be made: 

1. Small errors in displacement do not indicate small errors in stresses. 

2. Lower order integration produces a more flexible structure than the use of 
higher order numerical integration. 

3. If this isoparametric element is integrated exactly, the tip displacement would 
be less than the exact displacement.  
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4. The stresses were calculated at the integration point and extrapolated to the 
nodes. Every computer program uses a different method to evaluate the 
stresses within an element. Those methods will be discussed later. 

5.4 RESTRICTION ON LOCATIONS OF MID-SIDE NODES 

The previous example illustrates that the location of the mid-side node need not 
be at the geometric center of the element. However, its location is not completely 
arbitrary. 

Equation (5.4b) can be rewritten, with
21
Lx −= , 

22
Lx =  and 

23
Lrx = , as 

2
)2()( LsrsJ −=  (5.9) 

where r is the relative location of node 3, with respect to the center of the 
element. Equation (5.5) indicates that the strains can be infinite if  is zero. 
Also, if   is negative, it implies that the coordinate transformation between  x 
and s is very distorted. For infinite strains at locations 

)(sJ
)(sJ

1±=s , the zero singularity 
can be found from: 

02 =± r , or  
2
1

±=r  (5.10) 

Hence, the mid-side node location must be within the middle one-half of the 
element. In the case of two- and three-dimensional elements, mid-side nodes 
should be located within the middle one -half of each edge or side.  

At a crack tip, where the physical strains can be very large, it has been proposed 
that the elements adjacent to the crack have the mid-side node located at one-
fourth the length of the element side. The stresses at the integration points will 
then be realistic; and element strain energy can be estimated, which may be used 
to predict crack propagation or stability [5].  



ISOPARAMETRIC FORMULATION 5-7  

5.5 TWO-DIMENSIONAL SHAPE FUNCTIONS 

Two-dimensional shape functions can be written for different elements with an 
arbitrary number of nodes. The formulation presented here will be for a general 
four-sided element with four to nine nodes. Therefore, one formulation will cover 
all element types shown in Figure 5.2.  

4

1

2

3

4

1

2

3

5

r
s

4

1

2

3

5

67

8

4

1

2

3

5

67

8
9

rs

 

Figure 5.2 Four- to Nine-Node Two-Dimensional Isoparametric Elements 

The shape functions, in the natural r-s system, are a product of the one-
dimensional functions shown in Figure 5.1. The range of both r and s is ± . All 
functions must equal 1.0 at the node and equal zero at all other nodes associated 
with the element. The shape functions shown in Table 5.3 are for the basic four-
node element. The table indicates how the functions are modified if nodes 5, 6, 7, 
8 or 9 exist.  

1
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Table 5.3 Shape Functions for a Four- to Nine-Node 2D Element 

OPTIONAL NODES NODE  

i 

 

ir  

 

is  

SHAPE FUNCTION 

),(1 srN  5 6 7 8 9 

1 -1 -1 4/)1)(1(1 srN −−=  
2

5N
−   

2
8N

−  
4

9N
−  

2 1 -1 4/)1)(1(2 srN −+=  
2

5N
−

2
6N

−   
4

9N
−  

3 1 1 4/)1)(1(3 srN ++=   
2

6N
−

2
7N

−  
4

9N
−  

4 -1 1 4/)1)(1(4 srN +−=    
2

7N
−

2
8N

−  
4

9N
−  

5 0 -1 2/)1)(1( 2
5 srN −−=      

2
9N

−  

6 1 0 2/)1)(1( 2
6 srN −+=      

2
9N

−  

7 0 1 2/)1)(1( 2
7 srN +−=      

2
9N

−  

8 -1 0 2/)1)(1( 2
8 srN −−=      

2
9N

−  

9 0 0 )1)(1( 22
9 srN −−=       

If any node from 5 to 9 does not exist, the functions associated with that node are 
zero and need not be calculated. Note the sum of all shape functions is always 
equal to 1.0 for all points within the element. Tables with the same format can be 
created for the derivatives of the shape functions . The shape 
functions and their derivatives are numerically evaluated at the integration points. 

siri NN , and ,
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The relationship between the natural r-s and local orthogonal x-y systems are by 
definition: 

∑= ii xNsrx ),(  (5.11a) 

∑= ii yNsry ),(  (5.11b) 

Also, the local x and y displacements are assumed to be of the following form: 

∑= xiix uNsru ),(  (5.12a) 

∑= yiiy uNsru ),(  (5.12b) 

To calculate strains it is necessary to take the derivatives of the displacements 
with respect to x and y. Therefore, it is necessary to use the classical chain rule, 
which can be written as: 
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The matrix J is known in mathematics as the Jacobian matrix and can be 
numerically evaluated from: 
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At the integration points the J matrix can be numerically inverted. Or: 





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
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−

−
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1121

12221 1
JJ
JJ

J
J  (5.15) 

The term J is the determinate of the Jacobian matrix and is: 
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=−= 21122211  (5.16) 

Figure 5.3 illustrates the physical significance of this term at any point r and s 
within the element. Simple geometry calculations will illustrate that J relates the 
area in the x-y system to the natural reference system. Or: 

  (5.17) dsdrJdydxdA ==

Hence, all the basic finite element equations can be transformed into the natural 
reference system and standard numerical integration formulas can be used to 
evaluate the integrals. 
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Figure 5.3 True Area in Natural Reference System 

5.6 NUMERICAL INTEGRATION IN TWO DIMENSIONS 

Numerical integration in two dimensions can be performed using the one-
dimensional formulas summarized in Table 5.1. Or: 

∑∑∫ ∫ ==
− − i j

jijiji srJsrfWWdsdrsrJsrfI ),(),(),(),(
1

1

1

1

 (5.18) 

Note that the sum of the weighting factors,  , equals four, the natural area 
of the element. Most computer programs use 2 by 2 or 3 by 3 numerical 

jiWW
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integration formulas. The fundamental problem with this approach is that for 
certain elements, the 3 by 3 produces elements that are too stiff and the 2 by 2 
produces stiffness matrices that are unstable, or, rank deficient using matrix 
analysis terminology. Using a 2 by 2 formula for a nine-node element produces 
three zero energy displacement modes in addition to the three zero energy rigid 
body modes. One of these zero energy modes is shown in Figure 5.4. 

9 Node Element
2 by 2 Integration Zero Energy Mode  

Figure 5.4 A Zero Energy Hourglass Displacement Mode 

For certain finite element meshes, these zero energy modes may not exist after 
the element stiffness matrices have been added and boundary conditions applied. 
In many cases, however, inaccurate results may be produced if reduced 
integration is used for solid elements. Because of those potential problems, the 
author recommends the use of true two-dimensional numerical integration 
methods that are accurate and are always more numerically efficient. Therefore, 
Equation (5.18) can be written as 

∑∫ ∫ ==
− − i

iiiii srJsrfWdsdrsrJsrfI ),(),(),(),(
1

1

1

1

 (5.19) 

Eight- and five-point formulas exist and are summarized in Figure 5.5.  

If = 9/49, the eight-point formula gives the same accuracy as the 3 by 3 
Gauss product rule, with less numerical effort. On the other hand, if W = 1.0 the 
eight-point formula reduces to the 2 by 2 Gauss product rule. If one wants to 
have the benefits of reduced integration, without the introduction of zero energy 

αW
α
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modes, it is possible to let W = 0.99. Note that the sum of the weight factors 
equals four. 
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Figure 5.5 Eight- and Five-Point Integration Rules 

The five point formula is very effective for certain types of elements. It has the 
advantage that the center point, which in my opinion is the most important 
location in the element, can be assigned a large weight factor. For example, if 

 is set to 224/81, the other four integration points are located at 0W α , 
with weights of W = 5/9, which are the same corner points as the 3 by 3 Gauss 
rule. If W  is set to zero, the five-point formula reduces to the 2 by 2 Gauss rule.  

6.0±=

i

0

5.7 THREE-DIMENSIONAL SHAPE FUNCTIONS 

One can easily extend the two-dimensional approach, used to develop the 4- to 9-
node element, to three dimensions and create an 8- to 27-node solid element, as 
shown in Figure 5.6. 
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Figure 5.6 Eight- to 27-Node Solid Element 

Three-dimensional shape functions are products of the three basic one-
dimensional functions and can be written in the following form: 

),(),(),(),,( iiiiii ttgssgrrgtsrG =  (5.20) 

The terms are the natural coordinates of node “i.” The one-
dimensional functions in the r, s and t direction are defined as: 

node if         i
rrr i 1(),(

iii tsr  and ,
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±=+==

 (5.21) 

Using this notation, it is possible to program a shape function subroutine directly 
without any additional algebraic manipulations. The fundamental requirement of 
a shape function is that it has a value of 1.0 at the node and is zero at all other 
nodes. The node shape function is the basic node shape function corrected to 
be zero at all nodes by a fraction of the basic shape functions at adjacent nodes. 

 ig

81 NN  and  The shape functions  for the 8-corner nodes are:  
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8/4/2/ 27ggggN FEii −−−=  (5.22a) 

The shape functions  for the 12-edge nodes are:  209 NN  and  

4/2/ 27gggN Fii −−=  (5.22b) 

The shape functions  for the 6 center nodes of each face are: 

g

2621 NN  and  

Eg

2/27ggN ii −=  (5.22c) 

The shape function for the node at the center of the element is: 

2727 gN =  (5.22d) 

The term  is the sum of the  values at the three adjacent edges. The term  
is the sum of the 

Fg
g  values at the center of the three adjacent faces. 

The 27-node solid element is not used extensively in the structural engineering 
profession. The major reason for its lack of practical value is that almost the 
same accuracy can be obtained with the 8-node solid element, with the addition 
of corrected incompatible displacement modes, as presented in the next chapter. 
The numerical integration can be 3 by 3 by 3 or 2 by 2 by 2 as previously 
discussed. A nine-point, third-order, numerical integration formula can be used 
for the eight-node solid element with incompatible modes and, is given by: 

α
α α

3W
1  and   =−== 8/1?, 00 WWW  (5.23) 

The eight integration points are located at  and the 
center point is located at the center of the element. If =W  the formula reduces 
to the 2 by 2 by 2. If  the other eight integration points are located at 
eight nodes of the element,  

α±=α±=α±= tsr   and  ,
00

3/160 =W
.3/11 =±= αα W  and  

5.8 TRIANGULAR AND TETRAHEDRAL ELEMENTS 

The constant strain plane triangular element and the constant strain solid 
tetrahedral element should never be used to model structures. They are 
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numerically inefficient, compared to the computational requirements of higher 
order elements, and do not produce accurate displacements and stresses. 
However, the six-node plane triangular element and the ten-node solid tetrahedral 
element, shown in Figure 5.7, are accurate and numerically efficient. The reason 
for their success is that their shape functions are complete second order 
polynomials.  

A. SIX-NODE TRIANGLE B. TEN-NODE TETRAHEDRAL

Figure 5.7 Six-Node Plane Triangle and Ten-Node Solid Tetrahedral Elements 

They are used extensively for computer programs with special mesh generation 
or automatic adaptive mesh refinement. They are best formulated in area and 
volume coordinate systems. For the details and basic formulation of these 
elements see Cook [5]. 

5.9 SUMMARY 

The use of isoparametric, or natural, reference systems allows the development 
of curved, higher-order elements. Numerical integration must be used to evaluate 
element matrices because closed form solutions are not possible for non-
rectangular shapes. Elements must have the appropriate number of rigid-body 
displacement modes. Additional zero energy modes may cause instabilities and 
oscillations in the displacements and stresses. Constant strain triangular and 
tetrahedral elements should not be used because of their inability to capture stress 
gradients. The six-node triangle and ten-node tetrahedral elements produce 
excellent results.  
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